
Package1 User1

Preserving Multiple Artifacts

 After Integration

Package2 User2

User 2

Before Integration

Repeat Script1

by User3

Copy

Ptrace

each file

Parrot

Trap

system

calls

Input of TauRaust Program

high selectivity of data and code

A Case Study in Preserving a High Energy Physics Application

Haiyan Meng, Matthias Wolf, Peter Ivie, Anna Woodard, Michael Hildreth, and Douglas Thain

Department of Computer Science and Engineering / Department of Physics

ABSTRACT
The reproducibility of scientific results increasingly

depends upon the preservation of computational

artifacts. Although preserving a computation to be used

later sounds easy, it is surprisingly difficult due to the

complexity of existing software and systems. Implicit

dependencies, networked resources, and shifting

compatibility all conspire to break applications that

appear to work well. To investigate these issues, we

present a case study of a complex high energy physics

application. We analyze the application and attempt

several methods at extracting its dependencies for the

purposes of preservation. We propose one fine-grained

dependency management toolkit to preserve the

application and demonstrate its correctness in two

different environments - one virtual machine from the

Notre Dame Cloud Platform and one virtual machine

from the Amazon EC2 Platform. We report on the

completeness, performance, and efficiency of each

technique, and offer some guidance for future work in

application preservation.

This work was supported in part by National Science Foundation grants PHY-1247316 (DASPOS), OCI-1148330 (SI2) and PHY-1312842.

The University of Notre Dame Center for Research Computing scientists and engineers provided critical technical assistance throughout this research effort.

Observations
Many Explicit External Dependencies

Many Implicit Local Dependencies

Configuration Complexity

High Selectivity

Rapid Changes in Dependencies

Open Problems
Measure the Mess or Force Cleanliness?

Granularity of Dependencies

Scope of Reuse

Dependency Detection

Challenge 1: How to redirect data source of each dependency?

Evolution of Preservation Methods

High Selectivity of Data and Software Dependencies

One Implementation of Package Method

Evaluation
1. Execution

 time

2. Correctness

Name Location Total Size Named Size Used Size

CMSSW code CVS 88.1 GB 448. 3 MB 6.3 MB

Tau source Git 73.7 MB 73.7 MB 6.7 MB

PyYAML binaries HTTP 52 MB 52 MB 0 KB

.h file HTTP 41 KB 41 KB 0 KB

Ntuples data HDFS 11.6 TB N/A 20 GB

Configuration CVMFS 7.4 GB N/A 103 MB

Linux commands localFS 110 GB N/A 68.4 MB

Home dir AFS 12 GB N/A 32 MB

Misc commands PanFS 155 TB N/A 1.6 MB

Total 166.8 TB N/A 21 GB
Task Category Original Script Reduced Package

Obtain Namelist N/A 28min 28s

Generate Package N/A 26min 19s

Obtain Software 8min 11s N/A

Build Environment 5min 49s 4s

Analyze Code 20min 31s 13min 04s

Machine
Type

Distribution
Version

CPU
Cores

Memory
(GB)

Execution
Time

Original Machine Red Hat 5.10 64 125 13min 04s

KVM (Notre Dame) CentOS 5.10 4 2 21min 38s

Xen (EC2) Red Hat 5.9 16 60.5 13min 30s

1. Obtain one successful execution

2. Generate a dependency list

3. Generate a Package containing all the dependencies

Challenge 2: How to figure out the really used data?

RAW

Ntuples

PB level

400TB

11.6TB

20GB

CMSSW Named

CMSSW

CMSSW Used

88.1GB

448.3MB

6.3MB

data

code

TauAnalysis

TauRoast

Output 20MB

AOD

BEAN

script’ script’

script

GIT CVMFS

map map’

Script Email Package Abstract Script

GIT + CVMFS : original data GIT’ + CVMFS’: data copied into the package

Packaging Utility

Trace the experiment process

Figure out data dependencies

Generate Package1

Publish Package1

Repeat the Program

Obtain Package1

Package

New

Machine

Original

Machine

filename1 --- stat

filename2 --- read

filename3 --- readlink

…

filenameN --- access

Package

One

successful

execution

Original

Machine

Dependency List

A

Script1

B

Script2

B

A

Script1

B A

Script1

B

Script2

Package1 User3 Archive

C

GIT GIT’ CVMFS CVMFS’

